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UNIVERSAL RELATIONS FOR ACCELERATION WAVE SPEEDS
IN NONLINEAR VISCOELASTIC SOLIDS

Mike Scheidler

US Army Research Laboratory, APG, Maryland 21005-5069

Abstract. For finite deformations of nonlinear viscoelastic solids, the speed of propagation of acceleration
waves (i.e., ramp waves) generally depends not only on the current state of strain at the wave front but also on
the prior strain history. Consequently, explicit formulas for the wave speed can be quite complicated. Simple
formulas for the wave speed do exist for special classes of materials and/or special deformation histories, and
in this regard we consider one-dimensional motions of viscoelastic solids governed by single integral laws.
Some of the relations obtained are universal in the sense that they hold for all materials in a given class and
do not explicitly involve the relaxation kernel function in the hereditary integral defining these materials.

INTRODUCTION

We consider the speed of propagation of accelera-
tion waves in viscoelastic solids undergoing uniaxial
strain, as would occur in a normal plate impact exper-
iment prior to the arrival of lateral release waves. The
front of a ramp wave is an example of an acceleration
wave.1 Expansive (unloading) ramp waves can be
generated by reflection of a shock wave from a free
surface or a lower impedance material [1]. Compres-
sive ramp waves can be generated by use of fused
silica buffer plates or by graded density impactors
[1, 3] and also by fast pulsed power techniques [3].

For nonlinear viscoelastic solids, the acceleration
wave speedU is generally a nonlinear function of
the current strain as well as the past strain history
at the material point instantaneously situated on the
wave front. In particular, for viscoelastic materials
governed by single or multiple integral laws, the de-
pendence of the wave speed on the strain history typ-
ically involves an explicit dependence on the relax-
ation kernel function(s) in the hereditary integral(s).2

However, for special classes of viscoelastic solids
and/or special strain histories, simple explicit formu-

1 More precisely, anacceleration waveis a propagating singular
surface across which the stress, strain and particle velocity are
continuous but their spatial gradients and time derivatives suffer
jump discontinuities [1, 2].
2 See eq.(13) below for the general single integral case.

las for the wave speed exist in terms of quantities
which have a direct physical interpretation. An ex-
ample of such a relation was given by Nunziato et
al. [1] for an acceleration wave propagating into a
deformed region in equilibrium in afinite linearvis-
coelastic solid.3 They showed that

ρ
0
U2 =

dσ
E

dε1
+

1− ε1

1− 1
2ε1

σ
I
(ε1)−σ

E
(ε1)

ε1
, (1)

whereσ
I

andσ
E

are the instantaneous and equilib-
rium elastic response functions, andε1 is the equilib-
rium uniaxial strain ahead of the wave.4 This relation
is universalin the sense that it holds for all materials
in the indicated class and does not explicitly involve
the relaxation kernel functionG′ in the hereditary in-
tegral(17) defining the materials in this class.

The paper begins with a discussion of the gen-
eral, one-dimensional, nonlinear, single integral law
for viscoelastic response. This is followed by some
general results on acceleration wave speeds in such
materials. These results are used to derive relations
analogous to(1) but for more general classes of non-
linear viscoelastic solids and non-equilibrium condi-
tions ahead of the wave.

3 This class of nonlinear viscoelastic materials is defined by equa-
tions(17) and(20) below.
4 Precise definitions of all terms are given below.
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SINGLE INTEGRAL LAWS

Let F denote the deformation gradient relative
to a fixed, unstressed reference state, letJ = detF,
and let T denote the Cauchy stress tensor. Then
ΣΣΣ = JT (F−1)T and S = JF−1T (F−1)T are the 1st
and 2nd Piola-Kirchhoff stress tensors. Introduce a
Cartesian coordinate system with the 1-axis a sym-
metry axis of the material, and consider a time-
dependent uniaxial strain along this axis. The normal
component of stress, taken positive in compression,
is

σ ≡−T11 =−Σ11 =−λ1S11, (2)

whereλ1 = F11 is the (principal) stretch along the 1-
axis. Letε denote the nominal measure of uniaxial
strain taken positive in compression:ε = 1−λ1 .

We consider viscoelastic materials governed by a
nonlinear single integral law, the most general one-
dimensional form of which is

σ(t) = σ
I

(
ε(t)

)
+

∫ ∞

0
G ′(ε(t),ε(t−s),s

)
ds. (3)

Here G ′ denotes the partial derivative ofG with
respect to its third (or temporal) arguments:

G ′(ε1,ε2,s) =
∂
∂s

G (ε1,ε2,s) . (4)

Fading memory requires that the relaxation kernel
G ′(ε1,ε2,s) decay to zero sufficiently rapidly ass→
∞. There is some non-uniqueness in the functionsσ

I
andG . This may be removed by the assumptions

G ′(ε1,0,s) = 0 and G (ε1,ε2,0) = σ
I
(ε1) . (5)

Indeed, sinceG ′ rather thanG itself appears in the
constitutive relation(3), we are free to choose the
initial value G (ε1,ε2,0). The choice(5)2 simplifies
the results below. By(5)1 the upper limit∞ in (3)
may be replaced witht wheneverε(τ) = 0 for τ < 0.
Condition (5)1 implies thatσ

I
is the instantaneous

elastic response function, i.e., σ(t) = σ
I
(ε1) for the

jump strain history

ε(τ) =

{
ε1 , if τ = t ;
0, if τ < t ;

(6)

thenσ
I
(0) = 0. Also note that(5) implies

G (ε1,0,s) = G (ε1,0,0) = σ
I
(ε1) . (7)

Observe that(6) is the strain history experienced
by a point which, at the instantt, lies on the front of
a shock wave propagating into an unstrained region.
Thus the instantaneous elastic response function may
be inferred from measurements of the stress jump
across shocks in undeformed materials [1].

For any material with fading memory, letσ
R
(ε1, t)

denote the stress at timet ≥ 0 for thestress relaxation
test

ε(τ) =

{
ε1 , if τ ≥ 0;
0, if τ < 0.

(8)

Thenσ
R

is called thestress relaxation function(cf.
[4]), and

σ
R
(ε1,0) = σ

I
(ε1) , σ

R
(ε1,∞) = σ

E
(ε1) , (9)

whereσ
E

is the equilibrium elastic response func-
tion. From(3)–(5) it follows that fort ≥ 0,

G (ε1,ε1, t) = σ
R
(ε1, t) , (10)

and thatG (ε1,ε2, t) is the stress at timet > 0 for the
strain history

ε(τ) =





ε1 , if τ = t ;
ε2 , if 0≤ τ < t ;
0, if τ < 0.

(11)

The 1-D linear theory of viscoelasticity, namely

σ(t) = G(0)ε(t)+
∫ ∞

0
G′(s)ε(t−s)ds, (12)

is the special case of(3) with G (ε1,ε2,s) = G(s)ε2.
HereG′(s) = dG/ds; G(0) andG(∞) are the instan-
taneous and equilibrium elastic moduli;σ

I

(
ε(t)

)
=

G(0)ε(t) is the instantaneous elastic response; and
σ

R
(ε1, t) = G(t)ε1. In this caseG rather thanσ

R
is

usually referred to as the stress relaxation function.

ACCELERATION WAVE SPEED

Let ρ
0

andρ be the densities in the undeformed
and deformed states. LetU(t) denote the referential
or Lagrangean acceleration wave speed (measured
with respect to distance in the undeformed reference
state). For a general class of materials with fading
memory, Coleman et al. [2] showed thatρ

0
U2(t) is

given by the derivative of the stress response func-
tional with respect to the current strainε(t), holding
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the past strain history fixed. When applied to the sin-
gle integral law(3), this yields the formula

ρ
0
U2(t) = σ

I
′(ε(t)

)

+
∫ ∞

0
∂1G

′(ε(t),ε(t−s),s
)

ds,
(13)

whereσ
I
′(ε) = d

dε σ
I
(ε) and∂1G

′ denotes the partial
derivative ofG ′ with respect to its first argument.
The Eulerian wave speed (measured with respect to
distance in the deformed state) is given byU = λ1U .
And sinceρ

0
= λ1ρ , we also haveρU 2 = λ1 ·ρ0

U2.
For the linear theory(12), we see that(13) re-

duces toρ
0
U2 = G(0), and hence we recover the

well-known result that the wave speed is a constant,
independent of the deformation ahead of the wave.
However, for the nonlinear theory,(13) implies that
the acceleration wave speedU(t) is generally a com-
plicated function not only of the current strainε(t)
but also of the past strain history at the material point
instantaneously situated on the wavefront.

If the material ahead of the wave was initially
undeformed and subjected to a step in uniaxial strain
of amountε1 at time zero (i.e., the stress relaxation
test(8)), then(13) simplifies to

ρ
0
U2(t) = ∂1G (ε1,ε1, t)

= ∂1σ
R
(ε1, t)−∂2G (ε1,ε1, t)

(14)

for t > 0, where(14)2 follows from (10).
More generally, for the strain history(11) ahead of

the wave, the acceleration wave speed at the instantt
is given by

ρ
0
U2(t) = ∂1G (ε1,ε2, t) . (15)

Actually, this statement requires some qualification
sinceε is not continuous at the instantt. Let t > 0 be
fixed, and consider the strain history

ε(τ) =





ε̂(τ) , if τ ≥ t ;
ε2 , if 0≤ τ < t ;
0, if τ < 0;

(16)

whereε̂(τ) is any continuous function ofτ such that
ε̂(t) = ε1. Let U(τ) denote the acceleration wave
speed at timeτ > t for the strain history(16) ahead
of the wave. Then on taking the limit asτ approaches
t from above, we obtain(15). That is, (15) gives
the acceleration wave speed in the state immediately
following the second strain jump (at timet) for the
strain history(11).

FINITE LINEAR VISCOELASTICITY

Now we consider single integral laws of the form

σ(t) = σ
I

(
ε(t)

)

+
∫ ∞

0
G′(ε(t),s

) · f
(
ε(t−s)

)
ds,

(17)

whereG′(ε1,s) = ∂
∂s G(ε1,s). This is the special case

of (3) with

G ′(ε1,ε2,s) = G′(ε1,s) · f (ε2) . (18)

To satisfy(5)2 we require that

G (ε1,ε2,s) = f (ε2)
[
G(ε1,s)−G(ε1,0)

]

+σ
I
(ε1) .

(19)

Here f is interpreted as a strain measure, so that
f (0) = 0 and f ′(0) = 1, in which case(5)1 is sat-
isfied. Nunziato et al. [1] considered the special case
of (17) with f given by

f (ε) = ε− 1
2ε2 . (20)

This case arises from the 3-D single integral law

S(t) = S
I

(
E(t)

)
+

∫ ∞

0
G′

(
E(t),s

)[
E(t−s)

]
ds,

(21)
where E = 1

2 (FT F− I) is the Green strain tensor
andG′

(
E(t),s

)
is a fourth order tensor. This class

of viscoelastic materials was termedfinite linear by
Coleman and Noll [5]. The quadratic term in(20) re-
sults from conversion to the nominal strain measure
ε. ReplacingE(t−s) by other finite measures of past
strain results in a different class of materials and in
particular a different choice forf in (17).

On settingε2 = ε1 in (19) and using(10), we see
that

G(ε1, t)−G(ε1,0) =
σ

R
(ε1, t)−σ

I
(ε1)

f (ε1)
. (22)

Now consider an acceleration wave in a material
governed by the integral law(17), with the material
ahead of the wave undergoing the stress relaxation
test(8). Then from(14)2, (19) and(22), the wave
speed at timet > 0 is given by

ρ
0
U2(t) = ∂1σ

R
(ε1, t)

+
f ′(ε1)
f (ε1)

[
σ

I
(ε1)−σ

R
(ε1, t)

]
.

(23)
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Note that under the given assumptions,σ
R
(ε1, t) is

the stress at the wave front. On taking the limit as
t → ∞ and using(9)2, we obtain the speed of a
wave propagating into a region which has been in
equilibrium for all time at strainε1 and stressσ

E
(ε1):

ρ
0
U2 =

dσ
E

dε1
+

f ′(ε1)
f (ε1)

[
σ

I
(ε1)−σ

E
(ε1)

]
. (24)

For the special case wheref is given by(20), this re-
duces to the formula(1) of Nunziato et al. [1, §21].
They used this to calculate the speed of expansive ac-
celeration waves propagating into deformed regions
in equilibrium, the deformation having been induced
by the passage of a steady shock wave. The strain
history resulting from the passage of a steady shock
is only approximately given by(8), but due to fading
memory this approximation leads to small errors.

PIPKIN-ROGERS MATERIALS

Next we consider single integral laws of the form

σ(t) = σ
I

(
ε(t)

)

+h
(
ε(t)

) ·
∫ ∞

0
G′(ε(t−s),s

)
ds,

(25)

where G′(ε2,s) = ∂
∂s G(ε2,s) , G(0,s) = 0, and

h(0) = 1. This is the special case of(3) with

G ′(ε1,ε2,s) = h(ε1) ·G′(ε2,s) . (26)

Condition(5)1 is satisfied, and(5)2 holds if we take

G (ε1,ε2,s) = h(ε1)
[
G(ε2,s)−G(ε2,0)

]

+σ
I
(ε1) .

(27)

Pipkin and Rogers [4] considered the 3-D single
integral law

S(t) = G
(
E(t),0

)
+

∫ ∞

0
G ′(E(t−s),s

)
ds, (28)

whereG(000,s) = 000, so that the first term on the right
represents the instantaneous elastic response. For the
1-D case considered here,(28) reduces to(25) with
h(ε) = 1−ε = λ1; this term is a consequence of con-
version from the second to the first Piola-Kirchhoff
stress measure (see(2)). Replacement ofS in (28)

with other (Lagrangean) stress tensors would result
in different functional forms forh in (25).

Now consider an acceleration wave in a material
governed by the integral law(25), with no restric-
tions on the (uniaxial) strain history ahead of the
wave. From(13) and (26), we see thatρ

0
U2(t) is

given by σ
I
′(ε(t)

)
+ h′

(
ε(t)

)∫ ∞
0 G′(ε(t − s),s

)
ds.

Then on solving(25) for this integral and substitut-
ing the result into the above expression, we obtain

ρ
0
U2(t) = σ

I
′(ε(t)

)

− h′
(
ε(t)

)

h
(
ε(t)

) [
σ

I

(
ε(t)

)−σ(t)
]
,

(29)

with ε(t) andσ(t) the strain and stress at the wave
front. Whenh(ε) = 1− ε, the termh′(ε)/h(ε) re-
duces to1/(1− ε) = 1/λ1 . For a stress relaxation
test(8) ahead of the wave andt > 0 , (29) reduces to

ρ
0
U2(t) =

dσ
I

dε1
− h′(ε1)

h(ε1)
[
σ

I
(ε1)−σ

R
(ε1, t)

]
. (30)

Finally, we note that(29) and(30) remain valid if
(25) is replaced by the more general relation

σ(t) = σ
I

(
ε(t)

)
+h

(
ε(t)

) · ψ
s>0

(
ε(t−s)

)
, (31)

given appropriate restrictions on the functionalψ. In
particular, it is assumed thatψ does not depend on
the current strainε(t). This includes the case where
ψ is given by multiple hereditary integrals of the type
considered by Green and Rivlin [6].
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